from std_msgs.msg import Float32
from nav_msgs.msg import Odometry
from wild_thumper.srv import DWM1000Center, DWM1000CenterResponse
+from pyshared.simple_kalman import simple_kalman
if VISULAIZE:
import matplotlib.pyplot as plt
-class simple_kalman:
- def __init__(self, x_est, P_est, Q, R):
- self.x_est = x_est # Systemzustand
- self.P_est = P_est # Fehlerkovarianz
- self.Q = Q # Systemrauschen
- self.R = R # Varianz des Messfehlers
-
- def run(self, y):
- # Korrektur mit der Messung
- # (1) Berechnung der Kalman Verstärkung
- K = self.P_est/(self.R + self.P_est)
- # (2) Korrektur der Schätzung mit der Messung y
- x = self.x_est + K*(y - self.x_est)
- # (3) Korrektur der Fehlerkovarianzmatrix
- P = (1-K)*self.P_est
- #
- # Prädiktion
- # (1) Prädiziere den Systemzustand
- self.x_est = x
- # (2) Präzidiere die Fehlerkovarianzmatrix
- self.P_est = P + self.Q
-
- return x
-
- def set_measure_cov(self, R):
- if R > 0:
- self.R = R
class DW1000(threading.Thread):
def __init__(self, name, addr, offset):
class Position:
def __init__(self):
- # Varianz des Messfehlers
- Rx = 0.2
- Ry = 0.05
- # Fehlerkovarianz
- P_est_x = 0.02
- P_est_y = 0.01
- # Systemrauschen
- Qx = 0.001
- Qy = 0.00001
- # TODO: Replace 2x 1d kalman with 2d kalman
- # so the polyfit variance can be replaced with a covariance matrix
- self.filter_x = simple_kalman(1.0, P_est_x, Qx, Rx)
- self.filter_y = simple_kalman(0.0, P_est_y, Qy, Ry)
+ R = np.matrix([[0.045, 0.5], [0.0, 0.008]]) # Varianz des Messfehlers
+ P_est = 1e-3 * np.eye(2) # Fehlerkovarianz
+ Q = np.matrix([[0.001, 0.0], [0.0, 0.00001]]) # Systemrauschen
+ self.filter_xy = simple_kalman(np.array([[1.0, 0.0]]).T, P_est, Q, R)
self.speed_x = 0
self.speed_y = 0
self.speed_z = 0
current_time = rospy.Time.now()
dt = (current_time - self.last_time).to_sec()
# Subtract vehicle speed
- pos = np.array([self.filter_x.x_est, self.filter_y.x_est])
+ pos = self.filter_xy.x_est.T
# translation
pos -= np.array([self.speed_x*dt, self.speed_y*dt])
# rotation
[np.sin(self.speed_z*dt), np.cos(self.speed_z*dt)]])
pos = np.dot(pos, rot)
# copy back
- self.filter_x.x_est = pos[0]
- self.filter_y.x_est = pos[1]
+ self.filter_xy.x_est = pos.T
# run kalman if new measurements are valid
+ pos = None
if x != None and y != None:
- x = self.filter_x.run(x)
- y = self.filter_y.run(y)
+ pos = self.filter_xy.run(np.array([[x, y]]).T)
# Update variance
dist = np.linalg.norm([x, y])
- self.filter_x.set_measure_cov(np.polyval([0.018, 0.0, 0.0], dist))
- self.filter_y.set_measure_cov(np.polyval([0.006, 0.0, 0.0], dist))
+ cov_00 = np.polyval([0.018, 0.0, 0.0], dist)
+ cov_11 = np.polyval([0.006, 0.0, 0.0], dist)
+ self.filter_xy.set_measure_cov(np.matrix([[cov_00, 0.0], [0.0, cov_11]]))
else:
- x = self.filter_x.x_est
- y = self.filter_y.x_est
+ pos = self.filter_xy.x_est
+
+
+ x = pos.item((0, 0))
+ y = pos.item((1, 0))
self.last_time = current_time
return x,y
if __name__ == "__main__":
rospy.init_node('DWM1000', log_level=rospy.DEBUG)
- dwleft = DW1000("uwb_dist_left", 0xc2, +0.0)
- dwright = DW1000("uwb_dist_right", 0xc0, -0.0)
+ dwleft = DW1000("uwb_dist_left", 0xc2, -0.04)
+ dwright = DW1000("uwb_dist_right", 0xc0, +0.04)
dist_l_r = 0.285 # Distance between both DWM1000
rate = rospy.Rate(10)
pos = Position()