]> defiant.homedns.org Git - ros_roboint.git/blob - scripts/robo_explorer.py
coordinate/tf fixes
[ros_roboint.git] / scripts / robo_explorer.py
1 #!/usr/bin/env python
2 import roslib; roslib.load_manifest('roboint')
3 import rospy
4 import tf
5 from math import sin, cos, pi
6 from geometry_msgs.msg import Twist, TransformStamped, Point32
7 from sensor_msgs.msg import LaserScan
8 from nav_msgs.msg import Odometry
9 from roboint.msg import Motor
10 from roboint.msg import Inputs
11
12
13 class RoboExplorer:
14         def __init__(self):
15                 rospy.init_node('robo_explorer')
16                 
17                 rospy.Subscriber("cmd_vel", Twist, self.cmdVelReceived)
18                 rospy.Subscriber("ft/get_inputs", Inputs, self.inputsReceived)
19
20                 self.pub_motor = rospy.Publisher("ft/set_motor", Motor)
21                 self.pub_scan = rospy.Publisher("scan", LaserScan)
22                 self.pub_odom = rospy.Publisher("odom", Odometry)
23
24                 self.wheel_dist = 0.188 # 18.8cm
25                 self.wheel_size = 0.052*0.5 # 5.1cm gear ration=0.5
26                 self.speed = (0, 0)
27                 self.x = 0
28                 self.y = 0
29                 self.alpha = 0
30                 self.last_in = [0, 0]
31                 self.tf_broadcaster = tf.TransformBroadcaster()
32                 self.last_time = rospy.Time.now()
33
34                 rospy.spin()
35
36         def inputsReceived(self, msg):
37                 current_time = rospy.Time.now()
38
39                 self.tf_broadcaster.sendTransform((0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), current_time, "map", "base_link");
40                 self.send_odometry(msg, current_time)
41                 self.send_laser_scan(msg, current_time)
42
43                 self.last_time = current_time
44
45         def send_odometry(self, msg, current_time):
46                 dt = (current_time - self.last_time).to_sec();
47                 in_now = msg.input[1:3]
48                 in_diff = [abs(a - b) for a, b in zip(in_now, self.last_in)] # get changed inputs
49                 if self.speed[0] < 0:
50                         in_diff[0] = -in_diff[0]
51                 if self.speed[1] < 0:
52                         in_diff[1] = -in_diff[1]
53
54                 dist_dir = (in_diff[1] - in_diff[0])*self.wheel_size*pi/8 # steps_changed in different direction => m
55                 delta_alpha = dist_dir/self.wheel_dist
56
57                 dist = (in_diff[0] + in_diff[1])/2.0*self.wheel_size*pi/8 # steps_changed same direction => m
58
59                 delta_x = cos(self.alpha + delta_alpha/2)*dist
60                 delta_y = sin(self.alpha + delta_alpha/2)*dist
61
62                 self.alpha += delta_alpha
63                 if self.alpha > 2*pi:
64                         self.alpha -= 2*pi
65                 elif self.alpha < -2*pi:
66                         self.alpha += 2*pi
67                 self.x += delta_x
68                 self.y += delta_y
69                 self.last_in = in_now
70
71                 # speeds
72                 vx = delta_x / dt
73                 vy = delta_y / dt
74                 valpha = delta_alpha / dt
75
76                 # first, we'll publish the transform over tf
77                 self.tf_broadcaster.sendTransform((0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), current_time, "odom", "base_link");
78
79                 # next, we'll publish the odometry message over ROS
80                 odom = Odometry()
81                 odom.header.stamp = current_time
82                 odom.header.frame_id = "/odom"
83
84                 # since all odometry is 6DOF we'll need a quaternion created from yaw
85                 odom_quat = tf.transformations.quaternion_from_euler(0, 0, self.alpha)
86
87                 # set the position
88                 odom.pose.pose.position.x = self.x
89                 odom.pose.pose.position.y = self.y
90                 odom.pose.pose.position.z = 0.0
91                 odom.pose.pose.orientation.x = odom_quat[0]
92                 odom.pose.pose.orientation.y = odom_quat[1]
93                 odom.pose.pose.orientation.z = odom_quat[2]
94                 odom.pose.pose.orientation.w = odom_quat[3]
95
96                 # set the velocity
97                 odom.child_frame_id = "base_link";
98                 odom.twist.twist.linear.x = vx
99                 odom.twist.twist.linear.y = vy
100                 odom.twist.twist.angular.z = valpha
101
102                 # publish the message
103                 self.pub_odom.publish(odom)
104                 
105         def send_laser_scan(self, msg, current_time):
106                 # first, we'll publish the transform over tf
107                 self.tf_broadcaster.sendTransform((0.06, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), current_time, "base_link", "scan");
108
109                 # actually ultra sonic range finder
110                 scan = LaserScan()
111                 scan.header.stamp = current_time
112                 scan.header.frame_id = "/scan"
113                 scan.angle_min = -pi/4;
114                 scan.angle_max = pi/4;
115                 scan.angle_increment = pi/4;
116                 scan.time_increment = 0.01;
117                 scan.range_min = 0.0;
118                 scan.range_max = 4.0;
119                 for i in range(3):
120                         scan.ranges.append(msg.d1/100.0)
121                 scan.intensities.append(0.5)
122                 scan.intensities.append(1.0)
123                 scan.intensities.append(0.5)
124                 self.pub_scan.publish(scan)
125
126         # test with rostopic pub -1 cmd_vel geometry_msgs/Twist '[0, 0, 0]' '[0, 0, 0]'
127         def cmdVelReceived(self, msg):
128                 trans = msg.linear.x
129                 rot = msg.angular.z # rad/s
130
131                 # handle rotation as offset to speeds
132                 speed_offset = (rot * self.wheel_dist)/2.0 # m/s
133
134                 # handle translation
135                 speed_l = 0
136                 wish_speed_left = trans - speed_offset
137                 if abs(wish_speed_left) > 1.7/64.3:
138                         speed_l = 64.3*abs(wish_speed_left) - 1.7
139                         if wish_speed_left < 0:
140                                 speed_l*=-1
141                 speed_r = 0
142                 wish_speed_right = trans + speed_offset
143                 if abs(wish_speed_right) > 1.7/64.3:
144                         speed_r = 64.3*abs(wish_speed_right) - 1.7
145                         if wish_speed_right < 0:
146                                 speed_r*=-1
147
148                 # check limits
149                 if speed_l < -7: speed_l = -7
150                 elif speed_l > 7: speed_l = 7
151                 if speed_r < -7: speed_r = -7
152                 elif speed_r > 7: speed_r = 7
153
154                 outmsg = Motor()
155                 outmsg.num = 1
156                 outmsg.speed = round(speed_l)
157                 self.pub_motor.publish(outmsg)
158                 
159                 outmsg = Motor()
160                 outmsg.num = 2
161                 outmsg.speed = round(speed_r)
162                 self.pub_motor.publish(outmsg)
163
164                 self.speed = (speed_l, speed_r)
165
166 if __name__ == '__main__':
167         RoboExplorer()