class Position:
def __init__(self):
- R = np.matrix([[0.045, 0.5], [0.0, 0.008]]) # Varianz des Messfehlers
- P_est = 1e-3 * np.eye(2) # Fehlerkovarianz
- Q = np.matrix([[0.001, 0.0], [0.0, 0.00001]]) # Systemrauschen
+ R = np.matrix([[0.5, 0.0], [0.0, 0.2]]) # Varianz des Messfehlers
+ P_est = 1e50 * np.eye(2) # Fehlerkovarianz
+ Q = np.matrix([[0.001, 0.0], [0.0, 0.0001]]) # Systemrauschen
self.filter_xy = simple_kalman(np.array([[1.0, 0.0]]).T, P_est, Q, R)
self.speed_x = 0
self.speed_y = 0
self.filter_xy.set_measure_cov(np.matrix([[cov_00, 0.0], [0.0, cov_11]]))
else:
pos = self.filter_xy.x_est
+ self.filter_xy.P_est = np.matrix(1e50 * np.eye(2)) # reset estimate when lost
x = pos.item((0, 0))