]> defiant.homedns.org Git - ros_roboint.git/blobdiff - scripts/robo_explorer.py
Migration to ros control (diff_drive_controller)
[ros_roboint.git] / scripts / robo_explorer.py
index f39c9c46732ad3bcd71bff05d25c5246b2154094..83cc48b70b3e40533820de40a8f2c4fcb26c6066 100755 (executable)
@@ -1,14 +1,8 @@
 #!/usr/bin/env python
 import roslib; roslib.load_manifest('roboint')
 import rospy
-import tf
-import tf.broadcaster
-import tf.transformations
-from math import sin, cos, pi
-from geometry_msgs.msg import Twist, TransformStamped, Point32
-from sensor_msgs.msg import LaserScan
-from nav_msgs.msg import Odometry
-from roboint.msg import Motor
+from math import *
+from sensor_msgs.msg import Range
 from roboint.msg import Inputs
 
 
@@ -16,183 +10,32 @@ class RoboExplorer:
        def __init__(self):
                rospy.init_node('robo_explorer')
 
-               self.speed = (0, 0)
-               self.x = 0
-               self.y = 0
-               self.alpha = 0
-               self.last_in = None
-               self.tf_broadcaster = tf.broadcaster.TransformBroadcaster()
                self.last_time = rospy.Time.now()
-               self.x_last = 0
-               self.y_last = 0
-               self.alpha_last = 0
-
-               # fake laser scan with ultra sonic range finder
-               self.enable_ultrasonic_laser = bool(rospy.get_param('~ultrasonic_laser', "True"))
-               # Distance between both wheels in meter (18.8cm)
-               self.wheel_dist = float(rospy.get_param('~wheel_dist', "0.188"))
-               # Size of wheel Diameter in meter (5.1cm) * gear ratio (0.5) = 2.55cm 
-               self.wheel_size = float(rospy.get_param('~wheel_size', "0.0255"))
-               # Speed to PWM equation gradiant (The m in pwm = speed*m+b)
-               self.speed_gradiant = float(rospy.get_param('~speed_gradiant', "64.3"))
-               # Speed to PWM equation constant (The b in pwm = speed*m+b)
-               self.speed_constant = float(rospy.get_param('~speed_constant', "-1.7"))
-
-               self.pub_motor = rospy.Publisher("ft/set_motor", Motor)
-               if self.enable_ultrasonic_laser:
-                       self.pub_scan = rospy.Publisher("scan", LaserScan)
-               self.pub_odom = rospy.Publisher("odom", Odometry)
-               
-               rospy.Subscriber("cmd_vel", Twist, self.cmdVelReceived)
+               self.pub_sonar = rospy.Publisher("sonar", Range, queue_size=16)
                rospy.Subscriber("ft/get_inputs", Inputs, self.inputsReceived)
 
                rospy.spin()
-
+       
        def inputsReceived(self, msg):
                current_time = rospy.Time.now()
 
-               self.update_odometry(msg, current_time)
+               #self.update_odometry(msg, current_time)
                if (current_time - self.last_time).to_nsec() > 100e6: # send every 100ms
-                       self.send_odometry(msg, current_time)
-                       if self.enable_ultrasonic_laser:
-                               self.send_laser_scan(msg, current_time)
+                       #self.send_odometry(msg, current_time)
+                       self.send_range(msg, current_time)
                        self.last_time = current_time
 
-       def update_odometry(self, msg, current_time):
-               in_now = msg.input[:2]
-               if self.last_in is not None:
-                       in_diff = [abs(a - b) for a, b in zip(in_now, self.last_in)] # get changed inputs
-                       # fix in_diff from actual motor direction
-                       if self.speed[0] < 0:
-                               in_diff[0] = -in_diff[0]
-                       elif self.speed[0] == 0:
-                               in_diff[0] = 0
-                       if self.speed[1] < 0:
-                               in_diff[1] = -in_diff[1]
-                       elif self.speed[1] == 0:
-                               in_diff[1] = 0
-
-                       dist_dir = (in_diff[1] - in_diff[0])*self.wheel_size*pi/8 # steps_changed in different direction => m
-                       delta_alpha = dist_dir/self.wheel_dist
-
-                       dist = (in_diff[0] + in_diff[1])/2.0*self.wheel_size*pi/8 # steps_changed same direction => m
-
-                       delta_x = cos(self.alpha + delta_alpha/2)*dist
-                       delta_y = sin(self.alpha + delta_alpha/2)*dist
-
-                       self.alpha += delta_alpha
-                       if self.alpha > 2*pi:
-                               self.alpha -= 2*pi
-                       elif self.alpha < -2*pi:
-                               self.alpha += 2*pi
-                       self.x += delta_x
-                       self.y += delta_y
-
-               self.last_in = in_now
-
-       def send_odometry(self, msg, current_time):
-               # speeds
-               dt = (current_time - self.last_time).to_sec()
-               vx = (self.x - self.x_last) / dt
-               vy = (self.y - self.y_last) / dt
-               valpha = (self.alpha - self.alpha_last) / dt
-               self.x_last = self.x
-               self.y_last = self.y
-               self.alpha_last = self.alpha
-
-               # since all odometry is 6DOF we'll need a quaternion created from yaw
-               odom_quat = tf.transformations.quaternion_from_euler(0, 0, self.alpha)
-
-               # first, we'll publish the transform over tf
-               self.tf_broadcaster.sendTransform((self.x, self.y, 0.0), odom_quat, current_time, "base_link", "odom")
-
-               # next, we'll publish the odometry message over ROS
-               odom = Odometry()
-               odom.header.stamp = current_time
-               odom.header.frame_id = "/odom"
-
-               # set the position
-               odom.pose.pose.position.x = self.x
-               odom.pose.pose.position.y = self.y
-               odom.pose.pose.position.z = 0.0
-               odom.pose.pose.orientation.x = odom_quat[0]
-               odom.pose.pose.orientation.y = odom_quat[1]
-               odom.pose.pose.orientation.z = odom_quat[2]
-               odom.pose.pose.orientation.w = odom_quat[3]
-
-               # set the velocity
-               odom.child_frame_id = "base_link"
-               odom.twist.twist.linear.x = vx
-               odom.twist.twist.linear.y = vy
-               odom.twist.twist.angular.z = valpha
-
-               # publish the message
-               self.pub_odom.publish(odom)
-               
-       def send_laser_scan(self, msg, current_time):
-               # first, we'll publish the transform over tf
-               self.tf_broadcaster.sendTransform((0.06, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), current_time, "scan", "base_link")
-
-               # actually ultra sonic range finder
-               num_points = 60 # The base planner needs at least 30 points to work in the default config
-               opening_angle = 30*pi/180 # each side
-               scan = LaserScan()
+       def send_range(self, msg, current_time):
+               # ultra sonic range finder
+               scan = Range()
                scan.header.stamp = current_time
-               scan.header.frame_id = "/scan"
-               scan.angle_min = -opening_angle
-               scan.angle_max = opening_angle
-               scan.angle_increment = (2*opening_angle)/num_points
-               scan.time_increment = 0.0
-               scan.range_min = 0.0
-               scan.range_max = 4.0
-               for i in range(num_points):
-                       scan.ranges.append(msg.d1/100.0)
-               #scan.intensities.append(0.5)
-               #scan.intensities.append(1.0)
-               #scan.intensities.append(0.5)
-               self.pub_scan.publish(scan)
-
-       # test with rostopic pub -1 cmd_vel geometry_msgs/Twist '[0, 0, 0]' '[0, 0, 0]'
-       def cmdVelReceived(self, msg):
-               trans = msg.linear.x
-               rot = msg.angular.z # rad/s
-
-               # handle rotation as offset to speeds
-               speed_offset = (rot * self.wheel_dist)/2.0 # m/s
-
-               # handle translation
-               speed_l = 0
-               wish_speed_left = trans - speed_offset
-               if abs(wish_speed_left) > 0:
-                       speed_l = self.speed_gradiant*abs(wish_speed_left) + self.speed_constant
-                       if wish_speed_left < 0:
-                               speed_l*=-1
-               speed_r = 0
-               wish_speed_right = trans + speed_offset
-               if abs(wish_speed_right) > 0:
-                       speed_r = self.speed_gradiant*abs(wish_speed_right) + self.speed_constant
-                       if wish_speed_right < 0:
-                               speed_r*=-1
-
-               # check limits
-               if speed_l < -7: speed_l = -7
-               elif speed_l > 7: speed_l = 7
-               if speed_r < -7: speed_r = -7
-               elif speed_r > 7: speed_r = 7
-
-               #print "Speed wanted: %.2f m/s %.2f rad/s, set: %d %d" % (trans, rot, round(speed_l), round(speed_r))
-
-               outmsg = Motor()
-               outmsg.num = 1
-               outmsg.speed = round(speed_l)
-               self.pub_motor.publish(outmsg)
-               
-               outmsg = Motor()
-               outmsg.num = 2
-               outmsg.speed = round(speed_r)
-               self.pub_motor.publish(outmsg)
-
-               self.speed = (speed_l, speed_r)
+               scan.header.frame_id = "forward_sensor"
+               scan.radiation_type = 0
+               scan.field_of_view = 60*pi/180
+               scan.min_range = 0.0
+               scan.max_range = 4.0
+               scan.range = msg.d1/100.0
+               self.pub_sonar.publish(scan)
 
 if __name__ == '__main__':
        RoboExplorer()