]> defiant.homedns.org Git - ros_roboint.git/blobdiff - scripts/robo_explorer.py
"laser" scan to 30 points
[ros_roboint.git] / scripts / robo_explorer.py
index fd26738fb18b4f4ae90a18d66e04bae38f808100..22ea4d0efc288d232dc18f4a58ea45c90b19220b 100755 (executable)
@@ -13,77 +13,94 @@ from roboint.msg import Inputs
 class RoboExplorer:
        def __init__(self):
                rospy.init_node('robo_explorer')
-               
-               rospy.Subscriber("cmd_vel", Twist, self.cmdVelReceived)
-               rospy.Subscriber("ft/get_inputs", Inputs, self.inputsReceived)
-
-               self.pub_motor = rospy.Publisher("ft/set_motor", Motor)
-               self.pub_scan = rospy.Publisher("scan", LaserScan)
-               self.pub_odom = rospy.Publisher("odom", Odometry)
 
                self.wheel_dist = 0.188 # 18.8cm
-               self.wheel_size = 0.052*0.5 # 5.1cm gear ration=0.5
+               self.wheel_size = 0.052*0.5 # 5.2cm; gear ration=0.5
                self.speed = (0, 0)
                self.x = 0
                self.y = 0
                self.alpha = 0
-               self.last_in = [0, 0]
+               self.last_in = None
                self.tf_broadcaster = tf.TransformBroadcaster()
                self.last_time = rospy.Time.now()
+               self.input_count = 0
+               self.x_last = 0
+               self.y_last = 0
+               self.alpha_last = 0
+
+               self.pub_motor = rospy.Publisher("ft/set_motor", Motor)
+               self.pub_scan = rospy.Publisher("scan", LaserScan)
+               self.pub_odom = rospy.Publisher("odom", Odometry)
+               
+               rospy.Subscriber("cmd_vel", Twist, self.cmdVelReceived)
+               rospy.Subscriber("ft/get_inputs", Inputs, self.inputsReceived)
 
                rospy.spin()
 
        def inputsReceived(self, msg):
                current_time = rospy.Time.now()
+               self.input_count+=1
 
-               self.tf_broadcaster.sendTransform((0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), current_time, "map", "base_link");
-               self.send_odometry(msg, current_time)
-               self.send_laser_scan(msg, current_time)
-
-               self.last_time = current_time
+               self.update_odometry(msg, current_time)
+               if self.input_count >= 10:
+                       self.input_count = 0
+                       self.send_odometry(msg, current_time)
+                       self.send_laser_scan(msg, current_time)
 
-       def send_odometry(self, msg, current_time):
-               dt = (current_time - self.last_time).to_sec();
+       def update_odometry(self, msg, current_time):
                in_now = msg.input[1:3]
-               in_diff = [abs(a - b) for a, b in zip(in_now, self.last_in)] # get changed inputs
-               if self.speed[0] < 0:
-                       in_diff[0] = -in_diff[0]
-               if self.speed[1] < 0:
-                       in_diff[1] = -in_diff[1]
-
-               dist_dir = (in_diff[1] - in_diff[0])*self.wheel_size*pi/8 # steps_changed in different direction => m
-               delta_alpha = dist_dir/self.wheel_dist
-
-               dist = (in_diff[0] + in_diff[1])/2.0*self.wheel_size*pi/8 # steps_changed same direction => m
-
-               delta_x = cos(self.alpha + delta_alpha/2)*dist
-               delta_y = sin(self.alpha + delta_alpha/2)*dist
-
-               self.alpha += delta_alpha
-               if self.alpha > 2*pi:
-                       self.alpha -= 2*pi
-               elif self.alpha < -2*pi:
-                       self.alpha += 2*pi
-               self.x += delta_x
-               self.y += delta_y
+               if self.last_in is not None:
+                       in_diff = [abs(a - b) for a, b in zip(in_now, self.last_in)] # get changed inputs
+                       # fix in_diff from actual motor direction
+                       if self.speed[0] < 0:
+                               in_diff[0] = -in_diff[0]
+                       elif self.speed[0] == 0:
+                               in_diff[0] = 0
+                       if self.speed[1] < 0:
+                               in_diff[1] = -in_diff[1]
+                       elif self.speed[1] == 0:
+                               in_diff[1] = 0
+
+                       dist_dir = (in_diff[1] - in_diff[0])*self.wheel_size*pi/8 # steps_changed in different direction => m
+                       delta_alpha = dist_dir/self.wheel_dist
+
+                       dist = (in_diff[0] + in_diff[1])/2.0*self.wheel_size*pi/8 # steps_changed same direction => m
+
+                       delta_x = cos(self.alpha + delta_alpha/2)*dist
+                       delta_y = sin(self.alpha + delta_alpha/2)*dist
+
+                       self.alpha += delta_alpha
+                       if self.alpha > 2*pi:
+                               self.alpha -= 2*pi
+                       elif self.alpha < -2*pi:
+                               self.alpha += 2*pi
+                       self.x += delta_x
+                       self.y += delta_y
+
                self.last_in = in_now
 
+       def send_odometry(self, msg, current_time):
                # speeds
-               vx = delta_x / dt
-               vy = delta_y / dt
-               valpha = delta_alpha / dt
+               dt = (current_time - self.last_time).to_sec()
+               vx = (self.x - self.x_last) / dt
+               vy = (self.y - self.y_last) / dt
+               valpha = (self.alpha - self.alpha_last) / dt
+               self.last_time = current_time
+               self.x_last = self.x
+               self.y_last = self.y
+               self.alpha_last = self.alpha
+
+               # since all odometry is 6DOF we'll need a quaternion created from yaw
+               odom_quat = tf.transformations.quaternion_from_euler(0, 0, self.alpha)
 
                # first, we'll publish the transform over tf
-               self.tf_broadcaster.sendTransform((0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), current_time, "odom", "base_link");
+               self.tf_broadcaster.sendTransform((self.x, self.y, 0.0), odom_quat, current_time, "base_link", "odom")
 
                # next, we'll publish the odometry message over ROS
                odom = Odometry()
                odom.header.stamp = current_time
                odom.header.frame_id = "/odom"
 
-               # since all odometry is 6DOF we'll need a quaternion created from yaw
-               odom_quat = tf.transformations.quaternion_from_euler(0, 0, self.alpha)
-
                # set the position
                odom.pose.pose.position.x = self.x
                odom.pose.pose.position.y = self.y
@@ -94,7 +111,7 @@ class RoboExplorer:
                odom.pose.pose.orientation.w = odom_quat[3]
 
                # set the velocity
-               odom.child_frame_id = "base_link";
+               odom.child_frame_id = "base_link"
                odom.twist.twist.linear.x = vx
                odom.twist.twist.linear.y = vy
                odom.twist.twist.angular.z = valpha
@@ -104,23 +121,25 @@ class RoboExplorer:
                
        def send_laser_scan(self, msg, current_time):
                # first, we'll publish the transform over tf
-               self.tf_broadcaster.sendTransform((0.06, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), current_time, "base_link", "scan");
+               self.tf_broadcaster.sendTransform((0.06, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), current_time, "scan", "base_link")
 
                # actually ultra sonic range finder
+               num_points = 30
+               opening_angle = 30*pi/180 # each side
                scan = LaserScan()
                scan.header.stamp = current_time
                scan.header.frame_id = "/scan"
-               scan.angle_min = -pi/4;
-               scan.angle_max = pi/4;
-               scan.angle_increment = pi/4;
-               scan.time_increment = 0.01;
-               scan.range_min = 0.0;
-               scan.range_max = 4.0;
-               for i in range(3):
+               scan.angle_min = -opening_angle
+               scan.angle_max = opening_angle
+               scan.angle_increment = (2*opening_angle)/num_points
+               scan.time_increment = 0.1/num_points
+               scan.range_min = 0.0
+               scan.range_max = 4.0
+               for i in range(num_points):
                        scan.ranges.append(msg.d1/100.0)
-               scan.intensities.append(0.5)
-               scan.intensities.append(1.0)
-               scan.intensities.append(0.5)
+               #scan.intensities.append(0.5)
+               #scan.intensities.append(1.0)
+               #scan.intensities.append(0.5)
                self.pub_scan.publish(scan)
 
        # test with rostopic pub -1 cmd_vel geometry_msgs/Twist '[0, 0, 0]' '[0, 0, 0]'