]> defiant.homedns.org Git - ros_roboint.git/blobdiff - scripts/robo_explorer.py
rename chatter_pub to pub_inputs
[ros_roboint.git] / scripts / robo_explorer.py
index 1e02898e90b7d6d9e9c9c927caa67c5c9d4a78ed..bf3522927532cc94d8223e0fd9628448ccb5344c 100755 (executable)
@@ -2,9 +2,9 @@
 import roslib; roslib.load_manifest('roboint')
 import rospy
 import tf
-from math import sin, cos, pi
-from geometry_msgs.msg import Twist, TransformStamped, Point32
-from sensor_msgs.msg import LaserScan
+from math import *
+from geometry_msgs.msg import Twist, TransformStamped, Point32, PoseWithCovarianceStamped
+from sensor_msgs.msg import Range
 from nav_msgs.msg import Odometry
 from roboint.msg import Motor
 from roboint.msg import Inputs
@@ -13,111 +13,136 @@ from roboint.msg import Inputs
 class RoboExplorer:
        def __init__(self):
                rospy.init_node('robo_explorer')
-               
-               rospy.Subscriber("cmd_vel", Twist, self.cmdVelReceived)
-               rospy.Subscriber("ft/get_inputs", Inputs, self.inputsReceived)
-
-               self.pub_motor = rospy.Publisher("ft/set_motor", Motor)
-               self.pub_scan = rospy.Publisher("base_scan", LaserScan)
-               self.pub_odom = rospy.Publisher("odom", Odometry)
 
-               self.wheel_dist = 0.188 # 18.8cm
-               self.wheel_size = 0.052*0.5 # 5.1cm gear ration=0.5
-               self.speed = (0, 0)
                self.x = 0
                self.y = 0
                self.alpha = 0
-               self.last_in = [0, 0]
-               self.tf_broadcaster = tf.TransformBroadcaster()
+               self.last_in = None
+               self.tf_broadcaster = tf.broadcaster.TransformBroadcaster()
                self.last_time = rospy.Time.now()
+               self.x_last = 0
+               self.y_last = 0
+               self.alpha_last = 0
+
+               # Distance between both wheels in meter (18.55cm)
+               self.wheel_dist = float(rospy.get_param('~wheel_dist', "0.1855"))
+               # Size of wheel Diameter in meter (5.15cm) * gear ratio (0.5) = 2.575cm 
+               self.wheel_size = float(rospy.get_param('~wheel_size', "0.02575"))
+               # Speed to PWM equation gradiant (The m in pwm = speed*m+b)
+               self.speed_gradiant = float(rospy.get_param('~speed_gradiant', "64.3"))
+               # Speed to PWM equation constant (The b in pwm = speed*m+b)
+               self.speed_constant = float(rospy.get_param('~speed_constant', "-1.7"))
+
+               self.pub_motor = rospy.Publisher("ft/set_motor", Motor, queue_size=16)
+               self.pub_sonar = rospy.Publisher("sonar", Range, queue_size=16)
+               self.pub_odom = rospy.Publisher("odom", Odometry, queue_size=16)
+               
+               rospy.Subscriber("cmd_vel", Twist, self.cmdVelReceived)
+               rospy.Subscriber("ft/get_inputs", Inputs, self.inputsReceived)
+               rospy.Subscriber("initialpose", PoseWithCovarianceStamped, self.posReceived)
 
                rospy.spin()
+       
+       def posReceived(self, msg):
+               self.x = msg.pose.pose.position.x
+               self.y = msg.pose.pose.position.y
+               orientation = msg.pose.pose.orientation
+               angles = tf.transformations.euler_from_quaternion([orientation.x, orientation.y, orientation.z, orientation.w])
+               self.alpha = angles[2]
 
        def inputsReceived(self, msg):
                current_time = rospy.Time.now()
 
-               self.send_odometry(msg, current_time)
-               self.send_laser_scan(msg, current_time)
-
-               self.last_time = current_time
+               self.update_odometry(msg, current_time)
+               if (current_time - self.last_time).to_nsec() > 100e6: # send every 100ms
+                       self.send_odometry(msg, current_time)
+                       self.send_range(msg, current_time)
+                       self.last_time = current_time
+
+       def update_odometry(self, msg, current_time):
+               in_now = msg.input[:2]
+               if self.last_in is not None:
+                       in_diff = [abs(a - b) for a, b in zip(in_now, self.last_in)] # get changed inputs
+                       # fix in_diff from actual motor direction
+                       if msg.output[1] > 0: # left reverse
+                               in_diff[0] = -in_diff[0]
+                       elif msg.output[0] == 0 and msg.output[1] == 0: # left stop
+                               in_diff[0] = 0
+                       if msg.output[3] > 0: # right reverse
+                               in_diff[1] = -in_diff[1]
+                       elif msg.output[2] == 0 and msg.output[3] == 0: # right stop
+                               in_diff[1] = 0
+
+                       dist_dir = (in_diff[1] - in_diff[0]) * self.wheel_size*pi/8 # steps_changed in different direction => m
+                       delta_alpha = dist_dir/self.wheel_dist
+
+                       dist = (in_diff[0] + in_diff[1])/2.0 * self.wheel_size*pi/8 # steps_changed same direction => m
+
+                       delta_x = cos(self.alpha + delta_alpha/2)*dist
+                       delta_y = sin(self.alpha + delta_alpha/2)*dist
+
+                       self.alpha += delta_alpha
+                       if self.alpha > 2*pi:
+                               self.alpha -= 2*pi
+                       elif self.alpha < -2*pi:
+                               self.alpha += 2*pi
+                       self.x += delta_x
+                       self.y += delta_y
 
-       def send_odometry(self, msg, current_time):
-               dt = (current_time - self.last_time).to_sec();
-               in_now = msg.input[1:3]
-               in_diff = [abs(a - b) for a, b in zip(in_now, self.last_in)] # get changed inputs
-               if self.speed[0] < 0:
-                       in_diff[0] = -in_diff[0]
-               if self.speed[1] < 0:
-                       in_diff[1] = -in_diff[1]
-
-               dist_dir = (in_diff[1] - in_diff[0])*self.wheel_size*pi/8 # steps_changed in different direction => m
-               delta_alpha = dist_dir/self.wheel_dist
-
-               dist = (in_diff[0] + in_diff[1])/2.0*self.wheel_size*pi/8 # steps_changed same direction => m
-
-               delta_x = cos(self.alpha + delta_alpha/2)*dist
-               delta_y = sin(self.alpha + delta_alpha/2)*dist
-
-               self.alpha += delta_alpha
-               if self.alpha > 2*pi:
-                       self.alpha -= 2*pi
-               elif self.alpha < -2*pi:
-                       self.alpha += 2*pi
-               self.x += delta_x
-               self.y += delta_y
                self.last_in = in_now
 
+       def send_odometry(self, msg, current_time):
                # speeds
-               vx = delta_x / dt
-               vy = delta_y / dt
-               valpha = delta_alpha / dt
+               dt = (current_time - self.last_time).to_sec()
+               vx = sqrt((self.x - self.x_last)**2 + (self.y - self.y_last)**2) / dt
+               if (msg.output[0]-msg.output[1] + msg.output[2]-msg.output[3]) < 0:
+                       # moving backward
+                       vx*=-1
+               valpha = (self.alpha - self.alpha_last) / dt
+               self.x_last = self.x
+               self.y_last = self.y
+               self.alpha_last = self.alpha
 
                # since all odometry is 6DOF we'll need a quaternion created from yaw
                odom_quat = tf.transformations.quaternion_from_euler(0, 0, self.alpha)
 
                # first, we'll publish the transform over tf
-               self.tf_broadcaster.sendTransform((0.0, 0.0, 0.0), odom_quat, current_time, "odom", "base_link");
+               self.tf_broadcaster.sendTransform((self.x, self.y, 0.0), odom_quat, current_time, "base_link", "odom")
 
                # next, we'll publish the odometry message over ROS
                odom = Odometry()
                odom.header.stamp = current_time
-               odom.header.frame_id = "odom"
+               odom.header.frame_id = "/odom"
 
                # set the position
                odom.pose.pose.position.x = self.x
                odom.pose.pose.position.y = self.y
                odom.pose.pose.position.z = 0.0
-               odom.pose.pose.orientation = odom_quat
+               odom.pose.pose.orientation.x = odom_quat[0]
+               odom.pose.pose.orientation.y = odom_quat[1]
+               odom.pose.pose.orientation.z = odom_quat[2]
+               odom.pose.pose.orientation.w = odom_quat[3]
 
                # set the velocity
-               odom.child_frame_id = "base_link";
+               odom.child_frame_id = "base_link"
                odom.twist.twist.linear.x = vx
-               odom.twist.twist.linear.y = vy
+               odom.twist.twist.linear.y = 0.0
                odom.twist.twist.angular.z = valpha
 
                # publish the message
                self.pub_odom.publish(odom)
                
-       def send_laser_scan(self, msg, current_time):
-               # first, we'll publish the transform over tf
-               self.tf_broadcaster.sendTransform((0.06, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), current_time, "base_link", "base_scan");
-
-               # actually ultra sonic range finder
-               scan = LaserScan()
+       def send_range(self, msg, current_time):
+               # ultra sonic range finder
+               scan = Range()
                scan.header.stamp = current_time
-               scan.header.frame_id = "base_link"
-               scan.angle_min = -pi/4;
-               scan.angle_max = pi/4;
-               scan.angle_increment = pi/4;
-               scan.time_increment = 0.01;
-               scan.range_min = 0.0;
-               scan.range_max = 4.0;
-               for i in range(3):
-                       scan.ranges.append(msg.d1/100.0)
-               scan.intensities.append(0.5)
-               scan.intensities.append(1.0)
-               scan.intensities.append(0.5)
-               self.pub_scan.publish(scan)
+               scan.header.frame_id = "forward_sensor"
+               scan.radiation_type = 0
+               scan.field_of_view = 60*pi/180
+               scan.min_range = 0.0
+               scan.max_range = 4.0
+               scan.range = msg.d1/100.0
+               self.pub_sonar.publish(scan)
 
        # test with rostopic pub -1 cmd_vel geometry_msgs/Twist '[0, 0, 0]' '[0, 0, 0]'
        def cmdVelReceived(self, msg):
@@ -130,14 +155,14 @@ class RoboExplorer:
                # handle translation
                speed_l = 0
                wish_speed_left = trans - speed_offset
-               if abs(wish_speed_left) > 1.7/64.3:
-                       speed_l = 64.3*abs(wish_speed_left) - 1.7
+               if abs(wish_speed_left) > 0:
+                       speed_l = self.speed_gradiant*abs(wish_speed_left) + self.speed_constant
                        if wish_speed_left < 0:
                                speed_l*=-1
                speed_r = 0
                wish_speed_right = trans + speed_offset
-               if abs(wish_speed_right) > 1.7/64.3:
-                       speed_r = 64.3*abs(wish_speed_right) - 1.7
+               if abs(wish_speed_right) > 0:
+                       speed_r = self.speed_gradiant*abs(wish_speed_right) + self.speed_constant
                        if wish_speed_right < 0:
                                speed_r*=-1
 
@@ -147,17 +172,17 @@ class RoboExplorer:
                if speed_r < -7: speed_r = -7
                elif speed_r > 7: speed_r = 7
 
+               #print "Speed wanted: %.2f m/s %.2f rad/s, set: %d %d" % (trans, rot, round(speed_l), round(speed_r))
+
                outmsg = Motor()
-               outmsg.num = 1
+               outmsg.num = 0
                outmsg.speed = round(speed_l)
                self.pub_motor.publish(outmsg)
                
                outmsg = Motor()
-               outmsg.num = 2
+               outmsg.num = 1
                outmsg.speed = round(speed_r)
                self.pub_motor.publish(outmsg)
 
-               self.speed = (speed_l, speed_r)
-
 if __name__ == '__main__':
        RoboExplorer()