--- /dev/null
+#!/usr/bin/env python
+# -*- coding: iso-8859-15 -*-
+
+# Implementation of simple Kalman in python based on
+# Xilinx DSP Magazine #1 (2005) - http://www.xilinx.com/publications/
+
+import numpy as np
+
+class simple_kalman:
+ def __init__(self, x_est, P_est, Q, R):
+ # Convert arguments to vectors/matrices if not given
+ if type(x_est) != type(np.array([0])): x_est = np.array(x_est)
+ if type(P_est) != type(np.matrix([0])): P_est = np.matrix(P_est)
+ if type(Q) != type(np.matrix([0])): Q = np.matrix(Q)
+ if type(R) != type(np.matrix([0])): R = np.matrix(R)
+
+ self.x_est = x_est # Systemzustand
+ self.P_est = P_est # Fehlerkovarianz
+ self.Q = Q # Systemrauschen
+ self.R = R # Varianz des Messfehlers
+ self.I = np.eye(P_est.shape[0])
+
+ def run(self, y):
+ # Korrektur mit der Messung
+ # (1) Berechnung der Kalman Verstärkung
+ K = self.P_est * (self.R + self.P_est).I
+ # (2) Korrektur der Schätzung mit der Messung y
+ x = self.x_est + K*(y - self.x_est)
+ # (3) Korrektur der Fehlerkovarianzmatrix
+ P = (self.I-K)*self.P_est
+ #
+ # Prädiktion
+ # (1) Prädiziere den Systemzustand
+ self.x_est = x
+ # (2) Präzidiere die Fehlerkovarianzmatrix
+ self.P_est = P + self.Q
+
+ if x.shape == (1,1): return x.item(0,0)
+ return x
+
+
+if __name__ == '__main__':
+ import random
+ from matplotlib.pyplot import *
+
+ #
+ # 1d Test
+ #
+ orig = [0.5 for i in range(100)]
+ y = [orig[i] + (random.random()-0.5)/5 for i in range(0, len(orig))]
+ x = []
+
+ x_est = 0.0 # Systemzustand
+ P_est = 0.1 # Fehlerkovarianz
+ Q = 10e-6 # Systemrauschen
+ R = 0.0035 # Varianz des Messfehlers
+ p = simple_kalman(x_est, P_est, Q, R)
+
+ for i in range(0, 100):
+ # Messwert
+ x.append(p.run(y[i]))
+
+ plot(orig, label="Orig")
+ plot(range(100), y, 'o', label="Noise")
+ plot(x, label="Filtered")
+ ylim(0, 2)
+ legend()
+ show()
+
+ #
+ # 2d Test
+ #
+ orig1 = [0.5 for i in range(100)]
+ orig2 = [1.5 for i in range(100)]
+ y1 = [orig1[i] + (random.random()-0.5)/5 for i in range(0, len(orig1))]
+ y2 = [orig2[i] + (random.random()-0.5)/5 for i in range(0, len(orig2))]
+ x1 = []
+ x2 = []
+
+ x_est = np.array([[0.0, 0.0]]).T # Systemzustand
+ P_est = 0.1 * np.eye(2) # Fehlerkovarianz
+ Q = 10e-6 * np.eye(2) # Systemrauschen
+ R = np.matrix([[0.0035, 0.0], [0.0, 0.0035]]) # Varianz des Messfehlers
+ p = simple_kalman(x_est, P_est, Q, R)
+
+ for i in range(0, 100):
+ # Messwert
+ a = p.run(np.array([[y1[i], y2[i]]]).T)
+ x1.append(a.item((0, 0)))
+ x2.append(a.item((1, 0)))
+
+ plot(orig1, label="Orig")
+ plot(orig2, label="Orig")
+ plot(range(100), y1, 'o', label="Noise")
+ plot(range(100), y2, 'o', label="Noise")
+ plot(x1, label="Filtered")
+ plot(x2, label="Filtered")
+ ylim(0, 2)
+ legend()
+ show()